Return To Duty After Integrated Orthotic And Rehabilitation Initiative

James A. Blair, MD
Jeanne C. Patzkowski, MD
Johnny G. Owens, MSPT
Ryan V. Blanck, CPO
Joseph R. Hsu, MD

Skeletal Trauma Research Consortium (STReC)
Disclosures

• Funded by the United States Army Institute of Surgical Research

• Institutional research support from The Geneva Foundation (JRH) and the Henry M. Jackson Foundation (JRH)

The views expressed herein are those of the authors and do not reflect the official policy or position of Brooke Army Medical Center, the U.S. Army Medical Department, the U.S. Army Office of the Surgeon General, the Department of the Army, Department of Defense or the U.S. Government.
Return To Duty

- RTD following amputation: 16.5%
- RTD following Type III open tibia fracture: 20.5%
- Solution = aggressive rehab protocol + custom orthosis

Return To Run Clinical Pathway

- Poor outcomes after limb salvage or amputation
 - 2 and 7 years

- Return To Run Clinical Pathway (RTR)
 - Multidisciplinary
 - Aggressive rehab while in circular fixation

Intrepid Dynamic Exoskeletal Orthosis

• **IDEO**
 – Potentially energy-storing
 – Modular design

• **RTR while still in circular fixation**
 – Custom IDEO after frame removal

Hypothesis

Return to duty rates in servicemembers sustaining lower extremity limb-threatening injuries will be higher after participating in specialized rehabilitation with an IDEO compared to those that receive the IDEO alone.
Patients

- HELET and IDEO
 - October 2009 to May 2012
 - Considered amputation

- Exclusion
 - Non limb-threatening injury
 - No IDEO
 - Unknown RTD status
Patients

235 Enrolled in RTR

EXCLUDED
17 without IDEO
28 unknown RTD status
44 still in rehab

146 INCLUDED
Patients

- **146 patients included**
 - Multiple hospitals
 - Multiple surgeons
 - Same physical therapist
 - Same orthotist
Patients

- **Group 1**
 - RTR
 - IDEO

- **Group 2**
 - IDEO only
Results

• **Group 1** – 115 servicemembers
 – Higher average age and rank

• **Group 2** – 31 servicemembers
Group 1 – RTRCP + IDEO

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>RTD</th>
<th>non-RTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of servicemembers</td>
<td>115</td>
<td>59</td>
<td>31</td>
</tr>
<tr>
<td>Average age</td>
<td>31.45</td>
<td>32.18</td>
<td>30.67</td>
</tr>
<tr>
<td>Average enlisted rank</td>
<td>5.37</td>
<td>5.76</td>
<td>5.00</td>
</tr>
</tbody>
</table>

Group 1 Return To Duty rate: 51.3%
Group 2 – IDEO only

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>RTD</th>
<th>non-RTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of servicemembers</td>
<td>31</td>
<td>4</td>
<td>27</td>
</tr>
<tr>
<td>Average age</td>
<td>30.37</td>
<td>32.25</td>
<td>30.37</td>
</tr>
<tr>
<td>Average enlisted rank</td>
<td>5.00</td>
<td>6.00</td>
<td>4.89</td>
</tr>
</tbody>
</table>

Group 2 Return To Duty rate: **12.9%**

Group 1 Return To Duty rate: **51.3%**

\[p = 0.0001 \]
Mechanisms Of Injury – Group 1

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>All</th>
<th>RTD</th>
<th>non-RTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explosion</td>
<td>55</td>
<td>22</td>
<td>33</td>
</tr>
<tr>
<td>Gunshot wound</td>
<td>18</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Motor vehicle collision</td>
<td>14</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Fall</td>
<td>11</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Unknown</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>13</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

\[p = 0.0478 \]
Mechanisms Of Injury – Group 2

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>All</th>
<th>RTD</th>
<th>non-RTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explosion</td>
<td>16</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Gunshot wound</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Motor vehicle collision</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Fall</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>8</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

\[p = 0.0019 \]
Mechanisms of Injury - Combined

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>RTD</th>
<th>non-RTD</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explosion</td>
<td>71</td>
<td>23</td>
<td>48</td>
<td>0.011</td>
</tr>
<tr>
<td>Gunshot wound</td>
<td>23</td>
<td>9</td>
<td>14</td>
<td>0.043</td>
</tr>
</tbody>
</table>
RTR Clinical Pathway

• Demanded by limb salvage patients
 – Obtain high functional levels

• Utilizing RTR clinical pathway = higher RTD rates
 – Age and rank not statistically significant
Therapy seems to be a factor
Mechanisms Of Injury

• Significant RTD factor

• Explosive mechanisms are worst
 – >93% did not RTD when declining RTRCP clinical pathway
 – Only 32.4% able to RTD with RTRCP
 – RTRCP may be SM’s best chance

Literature Comparison

• RTD after Type III open tibia or amputation = 16-21%
 – Similar to Group 2
 – Higher age and rank → more admin or leadership roles?

• LEAP study return to work rate
 – 51% at 24 months, 58% at 7 years

Limitations

• Retrospective study

• Inconsistent data for MOS change

• Inherent selection bias
Conclusion

Return to duty rates in servicemembers sustaining lower extremity limb-threatening injuries are higher after participating in specialized rehabilitation with an IDEO compared to those that receive the IDEO alone.
Thank You