Simultaneous Acute Femoral Deformity Correction and Gradual Limb Lengthening Using the Retrograde Precice Femoral Nail

Limb Lengthening and Reconstruction Society
Annual Meeting
Charleston, South Carolina
July 22, 2016

Christopher Iobst, MD
Scott Nelson, MD
S. Robert Rozbruch, MD
Austin T. Fragomen, MD

LLRS
Multi-Center Study
14 y Female

- fracture to the right distal femoral physis
- Developed varus deformity and shortening of the right lower extremity
Deformities

- MAD 41mm varus
- mLDFA 102 degrees
- MPTA 88 degrees
- LLD = 24 mm
Fixator Assisted Nailing for Correction of Varus Distal Femoral Deformity

• Blocking screw
2 weeks post op showing initial distraction
3 months post op
Introduction

• Intramedullary lengthening nails have changed the field of limb lengthening
• Lengthen without external fixation
• BUT...Don’t have the capacity to perform deformity correction
Fixator Assisted Nailing

Hypothesis

Question: In patients presenting with femoral deformity and leg length discrepancy:

• What are the results of a fixator assisted retrograde femoral Precice nail?
• What technical considerations will improve accuracy?
Methods

• Retrospective multi-center study (Orlando, New York City, Loma Linda)
• 4 LLRS Surgeons
• Acute deformity correction - fixator assisted
• Gradual lengthening retrograde ILN
Technique
Technique
Technique
Technique
Technique
Results
Results

- 27 patients
- Average patient age = 28 years
- Average BMI = 27
- LLRS-AIM score = 4.6
- Average length of follow-up = 13 months (range 8-28 months)
Results

• **Primary Deformity Type** *(all have Leg Length Discrepancy)*
 – 15 patients with distal femoral valgus
 – 10 patients with distal femoral varus
 – 1 patient with external rotation deformity of femur
 – 1 patient with apex anterior distal femoral deformity
Results

- Mechanical axis deviation = 22 mm
- 7.6 degrees of deformity
- Leg length discrepancy = 31 mm
- PDFA averaged 82 degrees
Results

- Average blood loss = 117.4 ml
- Average surgical time = 167.4 minutes
- 5 mm half pins used in 12 patients
- 6 mm half pins used in 15 patients
- Average number of blocking screws = 1.3
- Average latency 5 days (range 4-10 days)
Results

- Post-op LLD = 0.8 mm
- 25/27 patients corrected within 3 mm (93%)
- Two patients had 6 mm residual LLD
- Average amount of lengthening = 30 mm
- No regenerate bone healing issues
Results

- Average MAD = 6 mm
- 22/27 (81%) had mechanical axis restored to normal (<10 mm)
- 7 degree angular correction (max 15 degrees)
- LDFA = 88 degrees
- PDFA = 84
Knee Range of Motion

• Average Pre Op Extension = 2.4 degrees
• Average Post Op Extension = 1 degree
 – All 27 patients had less than 5 degree flexion contracture
• Average Pre Op Flexion = 126 degrees
• Average Post Op Flexion = 124 degrees

• Mean arc of knee motion = 123 degrees
Results

• Average time to full weight bearing = 89 days
• Paley score:
 – 26 excellent (96%)
 – 1 good
• No infections, fractures, or insufficient regenerate
• No mechanical failure or hardware breakage
• No joint dislocations
Complications

- 4 patients (15%)
 - Premature consolidation (1)
 - Knee flexion contracture (1)
 - Apex ant deformity (1)
 - Posterior tibial subluxation (1)
 - Valgus with one inch LLD (posterior subluxation of tibia resolved with soft tissue releases)
• Compare valgus patients to varus patients
• Pre-op

<table>
<thead>
<tr>
<th></th>
<th>Valgus</th>
<th>Varus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>LDFA (degrees)</td>
<td>81.5</td>
<td>96.7</td>
</tr>
<tr>
<td>LLD (mm)</td>
<td>31.3</td>
<td>30.3</td>
</tr>
<tr>
<td>MAD</td>
<td>23.7</td>
<td>24.1</td>
</tr>
<tr>
<td>LLRS AIM</td>
<td>4.06</td>
<td>4.7</td>
</tr>
</tbody>
</table>
Results

- **Post-op**

<table>
<thead>
<tr>
<th></th>
<th>Valgus</th>
<th>Varus</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAD (mm)</td>
<td>6</td>
<td>7.3</td>
</tr>
<tr>
<td>LDFA (degrees)</td>
<td>87.3</td>
<td>90.1</td>
</tr>
<tr>
<td>% Desired Length</td>
<td>99.1</td>
<td>100</td>
</tr>
<tr>
<td>Paley Score</td>
<td>93% excellent</td>
<td>100% excellent</td>
</tr>
<tr>
<td># Blocking Screws Used</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>Return to OR</td>
<td>3 (20%)</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>
Results

• Mechanical Axis Deviation 10 mm or more:
 • MAD = 20.4 mm
 – Series average = 23 mm
 • LLD = 30.4 mm
 – Series average = 31 mm
• LLRS AIM score = 3.85
 – Series average = 4.6
• Surgical time = 158 minutes
 • Series average = 167 minutes
Results

• For Mechanical Axis Deviation 10 mm or more:
 – Half pin size:
 • 5 mm half pins used: 4/12
 • 6 mm half pins used: 1/15
 – Number of blocking screws = 0.71
 • 4/17 patients with 0 or 1 blocking screw (24%)
 • 1/10 cases that used 2 or more blocking screws (10%)
Results

• Mechanical Axis Deviation 10 mm or more:
 – Nail Size
 • ½ 8.5 mm nails (50%)
 • 3/15 10.7 nails (20%)
 • 1/10 12.5 nails (10%)
 – Nail lengths
 • 215, 230, 230, 330, 355
 – Average time to full weight bearing = 77 days
 • Series average = 89 days
Discussion
Discussion

• Technique allows successful combination of acute and gradual correction without the need for post-operative external fixation with minimal complications

• Paley score: 96% excellent outcomes
Discussion

• All patients had leg lengths restored within normal limits
 – 100% within 6 mm
 – 93% within 3 mm
• No hardware failures
• No regenerate bone healing issues
• Knee range of motion maintained
Discussion

• Mechanical Axis Deviation corrected from 24 mm to 6 mm
 – 81% to normal range

• 85% accuracy of external fixation mediated correction of femoral varus and valgus deformity
Discussion

• Varus or valgus deformity correction demonstrates similar results except return to OR rate

• 3 patients require return to the operating room (11%) for knee flexion contractures – 1 patient developed knee subluxation
Discussion

- Potential technical tips identified to improve outcomes:
 - 6 mm half pins
 - Multiple blocking screws should be used
 - Use the largest nail size possible
 - Avoid over-aggressive return to full weight bearing